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Abstract. Electrical Impedance Tomography (EIT) is a non-invasive
imaging modality that uses surface electrical measurements to determine
the internal conductivity of a body. The mathematical formulation of
the EIT problem is a nonlinear and severely ill-posed inverse problem for
which direct D-bar methods have proved useful in providing noise-robust
conductivity reconstructions. Recent advances in D-bar methods allow
for conductivity reconstructions using EIT measurement data from only
part of the domain (e.g., a patient lying on their back could be imaged
using only data gathered on the accessible part of the body). However,
D-bar reconstructions suffer from a loss of sharp edges due to a nonlin-
ear low-pass filtering of the measured data, and this problem becomes
especially marked in the case of partial boundary data. Including a pri-
ori data directly into the D-bar solution method greatly enhances the
spatial resolution, allowing for detection of underlying pathologies or
defects, even with no assumption of their presence in the prior. This
work combines partial data D-bar with a priori data, allowing for noise-
robust conductivity reconstructions with greatly improved spatial reso-
lution. The method is demonstrated to be effective on noisy simulated
EIT measurement data simulating both medical and industrial imaging
scenarios.

1. Introduction

In Electrical Impedance Tomography (EIT), we measure the surface volt-
ages resulting from the injection of currents on an array of electrodes placed
on the surface of a body. These measured boundary currents and voltages
are then used to reconstruct the internal electrical conductivity distribu-
tion via a mathematical inversion process, thus forming an image of the
body’s interior structures. Compared with other imaging modalities, EIT
has advantages in its low cost, high contrast, portability, and absence of
ionizing radiation. There is an ever-growing list of applications of EIT in
diverse fields, including medicine and biology, geophysical imaging, process
engineering, and nondestructive testing, just to name a few. Of special rele-
vance to the examples studied in this paper are the use of 2-D EIT in human
pulmonary imaging, as described for example in [8, 16, 32, 43, 44, 45], along
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Figure 1. Example simulating a patient with a pneumoth-
orax in the left lung. The simulated noisy measurement is
collected from 75% ventral data. The first image displays the
true conductivity with the position of electrodes indicated.
Using a partial data D-bar approach alone results in a recon-
struction with low spatial resolution, where the pathology
can be hardly seen (second). Incorporating a priori data
corresponding to a healthy patient directly into the recon-
struction method significantly improves the spatial resolu-
tion (third). Refining the prior improves the reconstruction
further, allowing even sharper visualization of the pathology
(fourth).

with the nondestructive testing and evaluation of concrete and other mate-
rials in industrial and engineering applications [10, 18, 25, 26, 33, 34, 46]. In
these applications, it is of immense interest to detect emerging pathologies
when monitoring patients, or defects in industrial components.

In 2-D EIT, electrodes are arranged in a plane around the circumference
of the domain, and the reconstruction occurs in the plane of the electrodes.
Ideally, electrodes are positioned around the entire boundary, resulting in
full boundary data. However, there are many practical applications in which
only part of the domain boundary is accessible, and we must rely instead
on partial boundary data. This often occurs in medical applications when
a critically ill patient is lying on their back and cannot be moved, or in
industrial testing applications when, for example, we wish to test a compo-
nent that is attached to part of a larger structure. Direct D-bar inversion
techniques for full boundary data are a well-established category of recon-
struction methods based on the results of [41] and [42]. The first practical
implementation was described in [47], the method was further developed
[38, 30, 11], and a regularization strategy for D-bar methods was introduced
and proven in [35]. Furthermore, D-bar reconstruction methods preserve the
nonlinearity of the inverse problem, have been proven to exhibit robustness
to domain shape errors [40], and are capable of real time imaging [13].

D-bar methods for the partial boundary setting differ from the full bound-
ary case in a few important ways. This study is based on a recently proposed
approach in [22], where the authors use a formulation of the conductivity
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equation with Neumann boundary conditions corresponding to applied cur-
rents. For an open and bounded domain Ω ⊂ R2, with an open (and not nec-
essarily connected) subset Γ ⊂ ∂Ω on which zero-mean current ϕ ∈ L2(∂Ω)
is injected, the electric potential u supported in Ω is modeled by

(1.1)
∇ · σ∇u = 0, in Ω,
σ ∂ν u = ϕ, on Γ ⊂ ∂Ω
σ ∂ν u = 0, on ∂Ω\Γ.

For uniqueness we require
∫
∂Ω u ds = 0, and due to conservation of charge∫

∂Ω ϕ ds = 0. The resulting voltage distribution on the boundary, u|∂Ω, is
assumed to be known only on Γ. In EIT, we wish to recover the conductivity
σ from the boundary measurements u|∂Ω and our knowledge of ϕ.

The boundary data for the EIT problem is given by the Neumann-to-
Dirichlet (ND) map, which takes boundary currents to boundary voltages.
In the case of full boundary data, where Γ = ∂Ω, the computation of the
scattering transform, which is a nonlinear custom Fourier transform crucial
to the method, depends instead on the Dirichlet-to-Neumann (DN) map. In
the full boundary setting, the DN map is obtained by simply inverting the
ND map. Since the ND data and the DN data are not equivalent for the
partial boundary setting, due to the graphs of the operators representing
different subsets of the Cauchy data, we cannot use the classical D-bar
method that depends on the DN map. For this reason we compute the
scattering transform directly from the ND map by an approximation. Details
of our setting are discussed in §2. The uniqueness question for the Neumann-
to-Dirichlet problem (1.1) has been addressed for coinciding measurement
and input domains in R2 in [29], and in higher dimensions in [21], for bisweep
data in [28], and for different input and measurement domains in [7].

Regardless of the reconstruction method used, EIT imaging involves solv-
ing a nonlinear and extremely ill-posed inverse problem which requires regu-
larization, so EIT images in general tend to exhibit a loss of sharp edges and
finer detail in the presence of noisy measurements. In D-bar methods, this
regularization involves low-pass filtering of the nonlinear scattering trans-
form data. Higher scattering frequencies become unstable in the presence of
noise and are therefore omitted from the reconstruction process. However,
these higher frequencies also encode finer details and sharp edges, and thus
the reconstructions suffer from a loss of spatial resolution. These problems
are exacerbated in the case of partial boundary data, where, as shown in [22],
the introduced error to the reconstruction depends linearly on the missing
domain.

One means of improving spatial resolution in EIT reconstructions is the
inclusion of prior information in the reconstruction algorithm. This informa-
tion, in the form of approximate shapes and locations of internal structures
and/or regional conductivity estimates, may be obtained in various ways
depending on the application. In the case of medical imaging, the approxi-
mate shapes, sizes, and locations of organ boundaries may be obtained from



4 M. ALSAKER, S. J. HAMILTON, AND A. HAUPTMANN

a previous CT or ultrasound scan, or by consulting an anatomical atlas.
In particular, in cases where chronically ill patients must receive CT scans
as part of a regular course of diagnosis and treatment, these prior scans
may be used as a ready source of highly accurate anatomical information
for follow-up EIT scans, which do not impart doses of ionizing radiation.
For these known structures, conductivity estimates may also be obtained
from literature. If instead the application is the nondestructive evaluation
of a manufactured structure or machine, the configuration and composition
of interior components is likely to be known, and design schematics may be
readily available, so that we may obtain spatial information and conductivity
estimates for interior structures with great confidence.

In the case of iterative reconstruction algorithms, which typically involve
minimizing a cost functional, the use of such a priori information—included
as a penalty term in the regularization strategy—has been established as a
means of enhancing spatial resolution in practical reconstructions, in both
medical imaging [2, 3, 6, 12, 14, 15, 31, 48, 49] as well as industrial or
engineering applications [23, 24]. In the Bayesian framework the prior dis-
tribution is an essential part of the computational inversion. Recent studies
employ domain truncation for the partial data problem [4, 5], and region of
interest approaches to non-linear difference imaging [36, 37]. A technique
for embedding a priori information into the D-bar algorithm for full bound-
ary data was introduced in [1], where the method was also proven to be a
nonlinear regularization strategy. An analogous method was applied to the
D-bar method for full boundary complex admittivity reconstructions in [19].
These methods have been demonstrated to provide noise-robust reconstruc-
tions with improved spatial resolution of full boundary simulated human
thoracic data, while successfully preserving and enhancing the appearance
of introduced pathologies that were not included in the priors.

In this manuscript, the a priori D-bar method is extended to the case of
conductivity reconstructions from partial boundary data. The purpose of
this work is to demonstrate that, even in cases where only partial boundary
data is available, a priori information can be incorporated into the D-bar
method to achieve noise-robust EIT images with enhanced spatial resolu-
tion, while preserving data pertaining to previously unknown pathologies or
defects, as illustrated in Figure 1. A presentation of the partial boundary
problem and D-bar formulation is given in §2, and the new a priori method
is described in §3. In §4, the effectiveness of the method is demonstrated on
noisy data simulating both human thoracic imaging and industrial nonde-
structive evaluation scenarios. In the case of human thoracic imaging, EIT
has been shown to provide information in cases of pneumothorax [9] and
pleural effusion [17], and both pathologies are simulated here. For the non-
destructive evaluation case, an industrial structural component containing
a defect is simulated. In all test cases, only prior information of approxi-
mate interior boundaries and conductivity estimates of known structures is
included; we do not assume any prior knowledge of pathologies or defects.
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This corresponds to a setting in which only prior information pertaining
to a healthy or unblemished state is known, but a pathology or defect has
developed since the prior information was obtained. The reconstructions
demonstrate the effectiveness of the new method to achieve enhanced spa-
tial resolution of not only known internal structures, but also of pathologies
and defects not included in the priors. Both full-data and partial-data cases
are included for comparison. In §5, final thoughts and conclusions are pre-
sented.

2. The partial data problem

The setting of the partial data problem, as we use it, has been introduced
in the continuum case in [22]. In the following we will combine this setting
with the ideas in [27], such that we model a realistic electrode configuration.
The key to the model is a set of well designed projections to the partial
boundary, which is represented as a union of electrodes. We consider here a
two-dimensional bounded domain Ω ⊂ R2 representing the measured object
covered by mutually disjoint electrodes Em,m = 1, . . . ,M . In our computa-
tions, we will choose Ω to be the unit disk D. Each electrode is modeled as a
connected and open subset of the boundary ∂Ω. The union of all electrodes
is denoted as Γ = ∪mEm and will serve as the domain of current input and
voltage measurement. The problem of EIT can then be modeled by the con-
ductivity equation with Neumann boundary conditions as stated in (1.1).
The inverse problem is to recover the conductivity σ(x, y) for (x, y) ∈ Ω from
the applied current and resulting voltage measurements on the boundary.
The measurement is modeled by the Neumann-to-Dirichlet map (ND map)

Rσ : L2
�(∂Ω)→ L2(∂Ω), Rσϕ = u|∂Ω ,

where L2
�(∂Ω) consists of L2-functions with zero mean. Thus, the ND map

takes every possible current pattern (Neumann data) and maps it to the
corresponding voltage distribution on the boundary (Dirichlet data) for a
given conductivity distribution σ on Ω. This work focuses on restricted
boundary access, only allowing for the measurement of a partial ND map as
discussed in [22]. The partial ND map is modeled as the composition of the
full-boundary ND map and a bounded linear operator J that maps current
patterns ϕ ∈ L2

�(∂Ω) to a subspace of functions only supported on Γ:

(2.1) L2
Γ(∂Ω) := {ϕ ∈ L2

�(∂Ω) : supp(ϕ) = Γ and

∫
Γ
ϕ = 0}.

The partial ND map in this setting is then defined as the composition

RΓ
σ := RσJ,

and represents the resulting voltage distribution ideally known on the whole
boundary. We will next discuss how to model the input and measurement
in the case where the boundary is only partially covered by electrodes.
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2.1. Modeling the measurement process. Following the construction in

[27], we use the concept of extended electrodes {Ẽm}Mm=1 that we define here
as open, connected and mutually disjoint subsets of ∂Ω, with the property
that

Em ⊂ Ẽm and
M⋃
m=1

Ẽm = ∂Ω, for m = 1, . . . ,M.

Typically, one can only apply discrete current values and, for each applied
value, measure one corresponding value for the resulting voltage on each
electrode. Thus, we need to produce piecewise constant functions to properly
model the input and measurement for an electrode setting. The projections
that are presented in the following were introduced in [27] and serve exactly
this purpose.

ϕ Jϕ

g = u|∂Ω Pg

Figure 2. Illustration of mappings involved in the mea-
surement modeling. Top row: Neumann data with the basis
function ϕ(θ) = cos(θ)/

√
π on the left and the nonorthogo-

nal projection Jϕ on the right. Bottom row: Dirichlet data
where g = u|∂Ω on the left is the solution of the partial
differential equation (1.1) and on the right the orthogonal
projection to the extended electrodes.

Let χm denote the indicator function for electrode Em, and analogously

χ̃m for the extended electrodes Ẽm. Then the partial boundary map that
produces the current input is given by a nonorthogonal projection onto the
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area of each electrode

(2.2) J : ϕ 7→
M∑
m=1

χm
|Em|

∫
Ẽm

ϕ ds, L2
�(∂Ω)→ L2

Γ(∂Ω).

This models the current input on each electrode. To model the voltage mea-
surement process appropriately, we use a projection to extended electrodes
with

(2.3) P : g 7→
M∑
m=1

χ̃m
|Em|

∫
Em

g ds, L2(∂Ω)→ L2(∂Ω).

Let us point out the different behavior of the two operators. Each current
pattern is produced by integration over the extended electrodes and pro-
jection onto the area of the electrodes Em. This is in contrast with the
measurement process, where the integration is over the area of each elec-
trode and the result is projected onto the extended electrodes as illustrated
in Figure 2. In fact, P is the adjoint of J in L2(∂Ω), which can be checked
by straightforward calculations.

The measurement that we obtain is then modeled as

(2.4) g = PRΓ
σϕ = PRσJϕ.

The above construction is related to the gap model for EIT; see for instance
[39] for a discussion of the different measurement models. As discussed in
§2.2, to reconstruct the conductivity with the D-bar algorithm, we also need
the ND map R1 corresponding to the case with the homogeneous conduc-
tivity σ ≡ 1; this can be obtained either by measurement (if possible) or
careful simulation (e.g., using finite element model).

2.2. Reconstructing from partial boundary measurements. The clas-
sical full boundary data D-bar method is formulated in terms of the Dirichlet-
to-Neumann map (DN map). If one is given Neumann-to-Dirichlet data, one
can simply perform inversion of the ND measurement matrix to form the
DN matrix and apply a D-bar algorithm. However, this approach does not
extend to the case of partial boundary data, since the graphs of the ND and
DN maps represent different subsets of the Cauchy data, hence inversion
is not possible. Furthermore, even if one can perform numerical inversion
of the ND matrix, the resulting matrix is not assured to coincide with the
DN matrix. Also, these inverted partial boundary ND matrices tend to
have large condition numbers, which alone will result in instabilities in the
reconstruction process.

Here we very briefly review the background for the D-bar method; the
interested reader is directed to [41] for further details. We begin with
a change of variables that transforms the conductivity equation given in
(1.1) into the 2-D Schrödinger equation with potential q = ∆

√
σ/
√
σ. This

Schrödinger equation is smoothly extended to the entire plane under the
assumption that σ ≡ 1 in a neighborhood of ∂Ω. We associate (x, y) ∈ R2
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with points z = x + iy ∈ C, introduce a complex frequency parameter
k ∈ C, and seek solutions ψ(z, k) to the Schrödinger equation satisfy-
ing the asymptotic property e−ikzψ(z, k) − 1 ∈ W 1,p̃(R2), p̃ > 2. The
functions µ(z, k) := ψ(z, k)e−ikz can then be shown to have the property

µ(z, 0) =
√
σ(z). It can further be shown that µ(z, k) can be recovered

by solving a special D-bar equation involving the scattering transform t(k).
The scattering transform can be thought of as a nonlinear Fourier transform
of the Schrödinger potential q. In classical D-bar methods t(k) is computed
using a reformulation to a boundary integral equation involving the DN
map.

Our restrictions in the partial boundary setting motivate the reformula-
tion of the D-bar method for ND measurement data and the direct use of
the ND map as described in [22]. The first step involves computation of an
approximate scattering transform from the ND map for k ∈ C by

(2.5) tND(k) =

∫
∂Ω

(
∂ν e

ik̄z̄
)

(R1 − Rσ) ∂ν e
ikzds(z).

For the chosen geometry, i.e. the unit disk Ω = D, this can be simply eval-
uated as

tND(k) =

∫
∂Ω
ik̄z̄eik̄z̄(R1 − Rσ)ikzeikzds(z)

= |k|2
∫
∂Ω
z̄eik̄z̄(Rσ − R1)zeikzds(z).

In practice, noise in the measurement data leads to blowup (in magnitude)
of the scattering data for large |k| frequencies. Therefore we employ a low-
pass filtering of the scattering data by only computing tND via (2.5) on a
disk of radius R > 0. In the case of full boundary data, low-pass filtering of
the scattering data was proven in [35] to be a regularization strategy, where
the radius of the truncation depends on the noise level of the measurement
data. For the partial boundary data case, a non-uniform truncation in the
form of a thresholding (through the parameter Ct) may be needed to control
the blowup, leading to the following definition for the computation of the
partial ND scattering data:

(2.6) tND
R (k) =

{
tND(k) if 0 < |k| ≤ R, and

∣∣< (tND
)∣∣ , ∣∣= (tND

)∣∣ ≤ Ct
0 else.

The non-uniform truncation parameter Ct is largely influenced by the re-
duction to partial boundary ND data (see Figure 4 of [22]). In this work,
the parameter Ct was set to the largest magnitude of the real or imaginary
component of the blind scattering prior tPR described in Section 3 below.

The approximate scattering transform tND
R is then used as a parameter

in the D-bar equation

(2.7) ∂k µR(z, k) =
1

4πk̄
tND
R (k)e−k(z)µR(z, k),
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where ek(z) := ei(kz+k̄z̄). The D-bar equation (2.7) is solved independently
for each z ∈ Ω via its equivalent integral formulation

(2.8) µR(z, k) = 1 +
1

(2π)2

∫
|k|≤R

tND
R (k′)

k′(k − k′)
e−k′(z)µR(z, k′)dk′1dk

′
2,

and the conductivity is then computed by simply evaluating

σR(z) = µR(z, 0)2.

3. The a priori partial data method

In this section we outline the formulation of the new method, in which
a priori information is embedded into the partial data D-bar algorithm,
following the work in [1] which was developed for full-data reconstructions.
This a priori data comes in the form of a conductivity distribution σPR that
is approximated using previously known information. As discussed in §1, in
many applications of EIT imaging, some prior information is known about
the structure and electrical properties of the subject, and this information
may be used to form σPR, which is incorporated into the regularized D-bar
method in two distinct ways. Throughout this section, some mathematical
and computational details have been abbreviated; we refer the interested
reader to [1] and to [41] for further details.

To begin, we form the Schrödinger potential

(3.1) qPR(z) =
∆
√
σPR(z)√
σPR(z)

.

In practice, we start with a piecewise-smooth a priori conductivity distribu-
tion σPR, which is then mollified to be at least C2 smooth to compute (3.1).
We define the function µPR(z, k) to be the solution analogous to µ(z, k) that
corresponds to σPR. It is known from the theoretical work in [41] that for
each fixed k, the function µPR satisfies the Lippmann-Schwinger equation

(3.2)
[
−∆− 4ik ∂z + qPR(z)

]
µPR(z, k) = 0,

where µPR(·, k) − 1 ∈ W 1,p̃(R2) for some 2 < p̃ < ∞. The function µPR,
obtained by solving (3.2), now encodes the a priori information.

The first way µPR is incorporated into the method involves extending
the radius of admissible scattering data from R to R2 ≥ R, by appending
an annulus of stable prior scattering data outside the disk where tND

R is
supported. To this end, we compute the a priori scattering data tPR using
the alternate formulation

(3.3) tPR(k) =

∫
R2
ek(z)µ

PR(z, k) qPR(z) dz,

which avoids computation of the ND map corresponding to σPR. See [22]
for a derivation of the ND form of the scattering transform as in (2.5) from
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a definition analogous to (3.3). The extended scattering data is then formed
as

(3.4) tR,R2
(k) :=


tND(k) 0 < |k| ≤ R
tPR(k) R < |k| ≤ R2

0 else.

If an additional threshold parameter is used to truncate the measurement
scattering data tND as in the formulation (2.6), the above definition of tR,R2

may be modified so that, for any k such that 0 < |k| ≤ R, but either∣∣<(tND)(k)
∣∣ > Ct or

∣∣=(tND)(k)
∣∣ > Ct, we assign tR,R2

(k) := tPR(k). Fur-
thermore, in the definition of tR,R2

, the influence of the prior on the resulting
reconstruction can be controlled by choosing R2 smaller or larger as desired.
In particular, it should be noted that if an additional thresholding is used,
then selecting R2 = R will not eliminate the prior completely from the def-
inition of tR,R2

, but will result in a weak expression of the a priori data in
the resulting reconstruction.

We next replace the asymptotic approximation µ ∼ 1 used in (2.8) with
an improved approximation

(3.5) µint(z) :=
1

πR2
2

∫
|k|≤R2

µPR(z, k) dk

that approaches the asymptotic condition of 1 as R2 →∞. We then choose a
weighting parameter α ∈ [0, 1] and for each z ∈ Ω, solve a modified version of
(2.8), using the extended scattering data tR,R2

and asymptotic replacement
term µint:

(3.6) µR2, α(z, k) = α+ (1− α)µint(z)

+
1

(2π)2

∫
|k|≤R2

tR,R2
(k′)

k′(k − k′)
e−k′(z)µR2, α(z, k′)dk′1dk

′
2.

This equation is then solved for µR2, α. The influence of the prior in the
construction of µR2, α can be controlled by modifying the parameter α, and
in fact, choosing α = 1 will result in α + (1 − α)µint(z) = 1, so that the
only influence of the prior will be from the scattering data tR,R2

. Hence
α = 0 corresponds to the heaviest weighting of the µint term. Once we have
obtained µR2, α, the updated conductivity is recovered as

(3.7) σR2, α(z) = (µR2, α(z, 0))2 .

The steps of the new method are outlined in Figure 3. Note that steps
1a and 1b can be computed independently allowing for the a priori data
computation to take place ahead of time offline, if desired. Furthermore,
steps 1a and 1b are each parallelizable in k and step 2 is parallelizable in
the spatial variable z, allowing for fast reconstructions.
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0. Setup:

• Select truncation radii R and R2

and weighting parameter α.
• Set up computational z and k

grids.

1b. A Priori Data:

• Construct and mollify a conductiv-

ity prior σPR(z).

• Compute qPR(z) using (3.1).
• For each 0 < |k| ≤ R2, solve (3.2)

for µPR(z, k).

• Evaluate the asymptotic replace-

ment term µint(z) using (3.5).

• Evaluate the scattering prior

tPR(k) using (3.3).

1a. Measurement Data:

• Form the ND maps Rσ and R1

from the current and voltage

data (simulating R1 using FEM

if needed).
• For 0 < |k| ≤ R, use Rσ and R1 to

compute tND
R (k) from (2.6) using

threshold Ct, if needed.

2. Combined A Priori Method:

• For 0 < |k| ≤ R2, construct the

extended scattering data tR,R2
(k)

via (3.4).
• For each z, solve (3.6) for

µR2, α(z, k).

• Recover the modified conductivity
distribution σR2, α(z) from (3.7).

Figure 3. The A Priori D-bar Method with Partial Data

4. Computational results

We now demonstrate the effectiveness of the proposed method on simu-
lated (noisy) EIT measurement data. We include two examples relevant to
medical imaging (a simulated pneumothorax and a simulated pleural effu-
sion) as well as an example of defect detection in a material, possibly relevant
to an industrial setting. Figure 4 presents the phantoms used in the exper-
iments, as well as the boundaries of their corresponding priors (represented
by the white dots). Tables 1 and 2 give the conductivity values in each
region of the phantoms and assigned priors. Note that a single prior is used
for both thoracic examples, as it corresponds to a healthy patient with no
pathology. Only information known with high confidence is included: e.g.,
approximate locations of heart, lungs, aorta, spine, major inclusions, etc.
To better visualize the nuances of the results and compare across examples,
all conductivity reconstructions are displayed on a color scale maxed out at
σ = 2, unless otherwise stated. The true maximum of each colormap is given
in each image caption. The reader is advised to view the reconstructions
on a computer screen if possible, to avoid color distortions and to visualize
nuances likely masked in a printed version.
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Figure 4. Phantoms used in numerical examples with the
corresponding boundaries of the priors outlined by white
dots. Note that for each example, the prior does not as-
sume a pathology/defect. Left: A simulated pneumothorax
occurring near the heart in the left lung. Middle: A simu-
lated pleural effusion occurring away from the heart in the
left lung. Right: An enclosed diamond with an ovular defect.

Table 1. Conductivity values of thoracic phantoms and as-
signed blind prior in S/m.

Heart Lungs Pathology Aorta Spine Background
Pneumothorax 2.0 0.5 0.15 2.0 0.25 1
Pleural Effusion 2.0 0.5 1.8 2.0 0.25 1
Prior 2.05 0.45 - 2.05 0.23 1

Table 2. Conductivity values of industrial phantom and as-
signed blind prior in S/m.

Diamond Inclusion Background
Industrial 2.0 1.4 1
Prior 2.05 - 1

4.1. Simulation of measurement data. The construction for simulating
the measurement data is described in §2.1. The ND map is represented using
an orthonormal basis of L2(∂Ω), where Ω = D is our chosen domain. The
full boundary case assumes 32 equidistant electrodes around the boundary
with a width of |Em| = π/32 each. In the partial data case a certain number
of electrodes are deactivated and not attached to the object. We explore
three scenarios: 24, 20, and 16 active electrodes, corresponding to 75%,
62.5%, and 50% of the boundary accessible, respectively.

We simulate trigonometric current patterns for the basis functions ϕn ∈
L2(∂Ω) as

ϕn(θ) =
1√
π

{
cos(nθ) for n > 0

sin((16− n)θ) for n > 16,
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where n ∈ {1, . . . , 31}. Note that for 32 electrodes, there are only 31 lin-
early independent basis functions [39]. Using the basis functions ϕn, the
applied current values on the electrodes are produced by the nonorthogonal
projection (2.2), as illustrated in Figure 2. The projected basis function
is then used as a boundary condition for the conductivity equation (1.1).
We solve the boundary value problem using a FEM solver for elliptic par-
tial differential equations. The voltages on the electrodes are computed
from the continuous solution u|∂Ω by applying the orthogonal projection
(2.3) to the boundary trace, g = Pu|∂Ω. Noisy measurement data was pro-
duced by adding 0.2% relative Gaussian zero-mean noise to the voltage data
(independent for each current pattern and electrode). The measurement
matrix M ∈ R31×31 was computed by evaluating the inner products for
n,m ∈ {1, . . . , 31} as

Mn,m = (gn, ϕm)L2(∂Ω) = (PRσJϕn, ϕm)L2(∂Ω).

4.2. Computation of the prior. Figure 5(left) displays the piecewise-
constant priors using the boundaries shown in Figure 4 and conductivity
values in Tables 1 and 2. Note that the blind (healthy patient) thoracic
prior is used for both the pneumothorax and pleural effusion examples, and
neither prior (thoracic or industrial) assumes a pathology/defect. The con-
ductivity priors were mollified (see Figure 5(right)) and the Schrödinger po-

tential qPR = ∆
√
σPR√
σPR

computed. The Lippmann-Schwinger equation (3.2)

was solved for each desired k and the associated scattering priors tPR and
integral replacement terms µint formed via (3.3) and (3.5), respectively. Fig-
ure 6 shows the µint term for various extended radii R2 for the blind thoracic
prior.

Sharp Prior Smoothed Prior

Figure 5. Blind priors used for the thoracic (top) and in-
dustrial (bottom) imaging examples. Take particular note
that the priors do not assume any pathology/defect.



14 M. ALSAKER, S. J. HAMILTON, AND A. HAUPTMANN

0.7 0.8 0.9 1 1.1 1.2 0.7 0.8 0.9 1 1.1 0.8 0.9 1 1.1

R2 = 4.0 R2 = 6.5 R2 = 9.0

Figure 6. The real part of the µint data (shown in the
z plane for z ∈ D) corresponding to the blind thoracic
prior given in Figure 5(top) computed from extended radii
R2 = 4.0, 6.5, and 9.0 in the k plane. Note that as the ra-
dius increases, the integral term approaches its asymptotic
behavior of µint ∼ 1.

The combined scattering data tR,R2
were then formed by combining tND

(measurement data) with tPR (prior) as described in (3.4); see Figure 7 for
an illustration.

Im
ag

R
ea

l

tND tPR tR,R2

Figure 7. Scattering data corresponding to the pneumoth-
orax example using the blind prior given in Figure 5(top).
The original radius is R = 4 and extended radius R2 = 9.
All scattering data is plotted on the same scale (real and
imaginary, respectively).

4.3. Thoracic EIT imaging. We explore two examples of interest in tho-
racic EIT imaging: a simulated pneumothorax and a simulated pleural ef-
fusion. In each case, we assume the same prior depicted in Figure 5(top).
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Although our phantoms here are on circular domains, the purpose of this
introductory work is to demonstrate the improvements the new method of-
fers over the existing partial data results for direct D-bar methods in 2D
[22, 20]. Our thoracic imaging examples that follow correspond to 75% and
62.5% access to the boundary of the patient, simulating ventral data for a
patient lying on their back.

4.3.1. Example 1: A Simulated Pneumothorax. We begin with the simulated
pneumothorax. Using only the partial data ND map, the conductivity σND

was recovered with a maximal radius of R = 4 and threshold of Ct = 13.3528,
the maximum magnitude of the scattering prior (see Section 2.2). The
reconstruction for 75% ventral access boundary data is shown at the top
of Figure 8. The maximum value of the partial data reconstruction σND is
1.4397 and the minimum is 0.2663.

While the partial data reconstruction σND contains some quality infor-
mation, the image exhibits fairly low spatial resolution. Using the prior
depicted in Figure 5(top), which results in the corresponding extended scat-
tering data (Figure 7) and asymptotic replacement term µint (Figure 6), the
quality of the conductivity image improves greatly. Figure 8 shows the recon-
structed conductivities σR2, α using the new method, for varying extended
radii R2 = 4.0, 6.5, 9.0 and parameters α = 1, 2

3 ,
1
3 , 0. Recall that α = 1

corresponds to the lowest weight of the µint term, while α = 0 results in
fullest expression of the prior. Notice that the reconstruction corresponding
to R2 = 4.0 and α = 1 (the upper left corner of Figure 8), which repre-
sents µint = 1 and merely augmenting the missing scattering data for tND

to fill the k-disk of radius 4.0, already exhibits a significant improvement
over the original partial data reconstruction σND. As the value R2 of the
extended scattering radius increases, the pnuemothorax becomes more pro-
nounced. Similarly, as the µint term is weighted more heavily, the organs
separate nicely and again the pathology is striking. We remind the reader
that no pathology has been included in the prior and hence the visible low
conductive area in the upper left lung results purely from the measured data.

It is clear from the conductivity reconstructions in Figure 8 that there
is a suspicious region in the upper left lung near the heart. This led us to
update the spatial prior (in the spirit of [1]), as follows. We overlaid the
organ boundaries of the blind thoracic prior on the σR2, α reconstruction
for α = 1 and R2 = 9.0 and employed a segmentation inside the left lung.
The chosen values correspond to no weight given to the µint term. The
segmentation was implemented, such that only the position of the suspected
pathology (organ/region) and a division value are needed as inputs. Based
on that information alone, the lung was segmented into two parts. The
boundaries of the updated prior are displayed in Figure 9 using a division
value of 0.25 S/m.

We then tested two new priors based on assigning the conductivity value
of the suspicious region by using either the average value (0.2751 S/m) of the
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Figure 8. Pneumothorax example for 75% Ventral Data.
TOP: The partial data ND D-bar reconstruction σND.
BOTTOM: The recovered conductivity σR2, α, shown for var-
ious regularization parameters R2 and α using the blind tho-
racic prior. The maximum value is 2.49 and occurs for R2 = 4
and α = 0.

pixels in the region, or the minimum value (0.1754 S/m) of the pixels in the
region since the value is clearly below the assigned value of 0.45, indicating
an area of lower conductivity. In an effort to avoid bias, the average pixel
value of the lower left lung (0.3894 S/m) was used in both new priors. The
resulting conductivity reconstructions σR2, α from the segmented priors are
shown in Figure 10.
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Original Prior Segmented Prior

Figure 9. Left: Original prior. Right: Updated Pneumoth-
orax prior. The left lung in the updated prior was segmented
into two regions.

Figure 11 shows reconstructions using the blind thoracic prior with 62.5%
ventral data, which corresponds to 20 active electrodes. The maximum
value of the partial data reconstruction σND is 1.4407 and the minimum
is 0.2728. Figure 12 compares reconstructions from partial boundary data
to full boundary data. The segmented priors for the full data case were
extracted from σR2, α using R2 = 9 and α = 1, with the average value
(0.2657 S/m) or minimum value (0.1563 S/m) for the top region and the
average value (0.4480 S/m) in the bottom. For 62.5% ventral data, the
segmented priors were formed from σR2, α for R2 = 4.0 and α = 1 with the
extracted average value (0.3290 S/m) or minimum (0.2176 S/m) in the top
region and the average pixel value (0.3724 S/m) in the lower lung region.
Notice that the pneumothorax is clearly visible regardless of whether the
average or minimum pixel value is used in the segmented prior. All of the
reconstructions using the a priori method (original prior as well as from the
segmented prior) are vast improvements over the partial data ND map D-bar
image σND, thus supporting the case for incorporating prior data directly
into the method.

4.3.2. Example 2: A Simulated Pleural Effusion. Next we explore the tho-
racic example of a simulated pleural effusion in the lower region of the left
lung. The recovered conductivity σND, using only the 75% ventral data
partial ND map, is shown in the top of Figure 13. The maximum value of
the partial data reconstruction σND is 1.5663 and the minimum is 0.3498.
Notice that the fluid is visible as a region of higher conductivity, however
the organs have little to no sharpness. Again, we employ the blind thoracic
prior given in Figure 5(top) to produce the new conductivity reconstruc-
tions σR2, α shown in Figure 13(bottom). As the blind prior is weighted
more heavily, an artifact of higher conductivity between the lungs near the
spine develops. This could be due to the prior trying to force the left lung
to have a much lower conductivity in the lower region than it truly does.
Nevertheless, we see that even the weakest expression of the prior (R2 = 4
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Figure 10. Pneumothorax example with 75% Ventral data
and segmented prior. The corresponding partial data ND D-
bar reconstruction σND is shown in Figure 8. Here we display
the recovered conductivity σR2, α for R2 = 4, 6.5 and various
α using the Seg Avg or Seg Min segmented thoracic priors.
The maximum value is 2.70 and occurs in the R2 = 4, α = 0
recon using the Seg Min prior.

and α = 1) produces a conductivity image that is greatly improved over the
partial data ND reconstruction σND.
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Truth σND

Figure 11. Pneumothorax example for 62.5% ventral data.
TOP: The partial data ND D-bar reconstruction σND. BOT-
TOM: The recovered conductivity σR2, α, using the blind tho-
racic prior. The maximum value is 2.25.
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Figure 12. Pneumothorax Example. Results for R2 = 9.0
and α = 0.67. The maximum is 2.71 and occurs in the 100%
boundary data, Blind prior reconstruction.



A PRIORI PARTIAL DATA EIT 21

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R2 = 4.0

R2 = 6.5

R2 = 9.0

α = 1 α = 2
3

α = 1
3

α = 0

Truth σND

Figure 13. Pleural effusion example for 75% ventral data.
TOP: The partial data ND D-bar reconstruction σND. BOT-
TOM: The recovered conductivity σR2, α using the blind tho-
racic prior. The maximum value is 2.90.

It is evident that there is a suspicious region in the left lung, indicating
and update to the prior is needed (see [1] for a description of methods to
update the prior). Using the R2 = 4 and α = 1 reconstruction, we overlaid
the boundaries of the organs from the blind thoracic prior, and segmented
the left lung (see Figure 14), as described in the pneumothorax example,
using a division value of 0.9 S/m. New values for the bottom of the left
lung were assigned from the average pixel value (1.1204 S/m) in the region,
and the maximum pixel value (1.3444 S/m) in the region. The conductivity
in the top of the left lung was set to the average pixel value in the region
(0.6129 S/m) to avoid bias.
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Original Prior Segmented Prior

Figure 14. Left: Original prior. Right: Updated Pleural
Effusion prior with the left lung segmented into two regions.

Following the last example, the extended scattering data was formed from
the updated priors and the new µint terms computed. The new conductivities
σR2, α using the updated priors are shown in Figure 15. The reconstructions
clearly demonstrate that by using either the average pixel value or maxi-
mum pixel value in the updated prior immensely improves the conductivity
reconstructions. The previous artifact seen in the conductivity reconstruc-
tion using the blind thoracic prior (Figure 13) is reduced, especially when
using the Seg Max prior. This could be due to the area of higher conduc-
tivity now being allowed to be absorbed into the lower lung region where it
belongs.

Figure 16 presents reconstructions from 62.5% ventral data and the blind
thoracic prior. The maximum and minimum of the partial data reconstruc-
tion σND are 1.48 and 0.42, respectively. Figure 17 compares reconstructions
from partial boundary data to full boundary data. The segmented priors
for the full data case were extracted from σR2, α using R2 = 9 and α = 1,
with the average value (1.2389 S/m) or maximum value (1.4796 S/m) for
the top region and the average value (0.6077 S/m) in the bottom. The
new segmented priors for 62.5% boundary data were created using σR2, α for
R2 = 4.0 and α = 1 with the extracted average value (0.8234 S/m) or maxi-
mum (1.0462 S/m) in the bottom region and the average pixel value (0.6372
S/m) in the top region. Note that for all levels of data, if the blind prior is
used, a conductive artifact (not present in the D-bar reconstructions σND)
appears in the lower left of the image, near the bottom of the left lung, yet
when the lung is segmented the artifact is significantly reduced, supporting
the case for updating the prior and demonstrating what an artifact may look
like when the prior is a bad match.
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Figure 15. Pleural effusion example for 75% ventral data
and segmented prior. The corresponding partial data ND
D-bar reconstruction σND is shown in Figure 13. Here we
display the recovered conductivity σR2, α for R2 = 4, 6.5 and
various α using the Seg Avg or Seg Max segmented tho-
racic prior. The maximum value is 2.83 and occurs in the
R2 = 4, α = 0 reconstruction using the Seg Max prior.
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Figure 16. Pleural effusion example for 62.5% ventral
data. The partial data ND D-bar reconstruction σND is
shown at the top. Below, the recovered conductivity σR2, α is
shown using the blind thoracic prior. The maximum value is
2.74.
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Figure 17. Pleural Effusion Example. Results for R2 = 6.5
and α = 0.67. The maximum is 2.65 and occurs in the 100%
boundary data, Blind prior reconstruction.

4.4. An industrial phantom with a defect. Lastly we explore an ex-
ample of potential interest to industry, a material with a defective region of
lower conductivity. Here we compare D-bar ND reconstructions σND from
full, 75%, 62.5% and 50% boundary data (centered at π/2 degrees), to those
including a priori data. The prior used here is shown in Figure 5(bottom)
and assumes no defect. The D-bar reconstructions σND were obtained as
before using the (partial) ND map.

Figures 18 and 19 compare reconstructions for each level of boundary data
with an extended scattering radius of R2 = 4 and R2 = 6.5, respectively.
Observe that even with full boundary data the defect is not visible without
the introduction of the prior (which, we remind the reader, does not assume
any defect). As the prior is weighted more heavily, the diamond becomes
better formed and the defect is clearly visible even in the first extension of
the radius of the scattering data to R2 = 6.5 (see Figure 19). For the partial
data ND cases, we see that even the R2 = 4 and α = 1 conductivity σR2, α

reconstructions are significant improvements over the partial ND D-bar re-
constructions σND. For each level of boundary data, the defect becomes
visible in the first increase of the radius of the scattering data. The µint

correction term itself is not enough with only R2 = 4.0 demonstrating the
importance of both new pieces of information in the a priori method.
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Figure 18. Industrial Example: From top to bottom, con-
ductivity reconstructions σR2, α for 100%, 75%, 62.5%, and
50% boundary data are presented with scattering radius
R2 = 4 and various weights α. The first column displays
the σND reconstructions that do not include any a priori in-
formation. The maximum value (3.12) occurs for the 50%
data reconstruction with strongest weight α = 0.
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Figure 19. Industrial Example: From top to bottom, con-
ductivity reconstructions σR2, α for 100%, 75%, 62.5%, and
50% boundary data are presented with extended scattering
radius R2 = 6.5 and various weights α. The first column
displays the σND reconstructions that do not include any a
priori information. The maximum value (3.13) occurs for the
50% data reconstruction with strongest weight α = 0.
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4.5. Quantification of errors. Our results demonstrate that conductivity
reconstructions from partial boundary data using only tND carry quality in-
formation, but suffer from a severe loss of spatial resolution. Incorporating
a priori information in the reconstruction process can immensely enhance
the visual impression of the image. The improvement is also clear from a de-
crease in the overall `2 relative errors (see Figure 20) and regional `2 relative
errors (see Figure 21). In each plot, the error of the initial reconstruction
σND is displayed in the top left corner. Filling in the lost information in
the scattering transform for the radius R2 = 4 already increases accuracy
(see α = 1). In general, one can see that as the radius R2 increases, or
weighting of µint increases (i.e. α decreases from 1 to 0), the relative error
in the overall reconstruction decreases. The extended radius R2 = 12 is
included here to demonstrate that only a slight improvement in the error
may be expected for larger regularization radii. Reconstruction errors for
all presented examples in §4 are displayed in Table 3.
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α for: R2 = 4 R2 = 6.5 R2 = 9 R2 = 12

Figure 20. Relative `2-error of reconstructions from 75%
ventral data of the pneumothorax example. The horizontal
axis represents α-values for increasing regularization radiiR2.
Recall that α = 0 corresponds to the heaviest weighting of the
µint term, while α = 1 to the weakest expression of the prior.
Errors from σND are compared to the new reconstructions
σR2, α for the blind and segmented priors.
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Figure 21. Relative `2-error in the lung region within the
boundary of the pathology, for 75% ventral data for the pneu-
mothorax example. The horizontal axis represents α-values
for increasing regularization radii R2.

5. Conclusions

We have presented a novel technique in which a priori information is
embedded into an ND D-bar method for partial boundary EIT imaging of
2-D conductivities. The new method has great flexibility to be used with a
priori information obtained in a variety of different ways, including previous
CT or other scans, atlas matching (in the case of human imaging), or design
schematics (in the case of industrial imaging), allowing for wide applicability.

To demonstrate the method’s effectiveness in improving spatial resolution,
we have presented the results of three test cases involving simulated partial
boundary data with 0.2% relative added noise and varying percentages of
available boundary data. The method was tested on both human thoracic
phantoms with introduced pathologies, as well as an industrial phantom
representing a nondestructive testing scenario. The success of the technique
in these differing applications demonstrates the method’s robustness and
potential for adaptability to various real-world scenarios. In all cases pre-
sented, the new a priori method produced images exhibiting a significant
increase in quality, specifically in sharpness of details and edges, over those
from the partial data ND D-bar method. The blind priors only contain in-
formation that is likely to be known with high confidence based on a healthy
or unblemished state. Nevertheless, changes to the subject that do no ap-
pear in the prior—such as the development of a pneumothorax or pleural
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Table 3. Relative `2-errors (%) for the conductivity re-
constructions from §4, for the extended regularization radii
R2 = 4 and 6.5.

D-bar R2 = 4 R2 = 6.5

Recon α = 1 α = 2
3

α = 1
3

α = 0 α = 1 α = 2
3

α = 1
3

α = 0

Pneumothorax

Blind Prior: 75% 35.13 29.65 26.74 24.86 24.44 26.82 25.36 24.20 23.39
Seg Avg Prior: 75% 35.13 29.14 26.22 24.65 24.95 25.75 24.16 22.92 22.11

Seg Min Prior: 75% 35.13 28.84 25.96 24.75 25.74 25.07 23.44 22.23 21.55

Blind Prior: 62.5% 38.95 32.71 30.02 28.06 27.12 30.12 28.74 27.56 26.63
Seg Avg Prior: 62.5% 38.95 32.33 29.62 27.83 27.30 29.43 27.99 26.78 25.84

Seg Min Prior: 62.5% 38.95 31.99 29.27 27.67 27.61 28.66 27.13 25.88 24.97

Pleural Effusion

Blind Prior: 75% 27.40 24.82 24.43 25.94 29.23 25.44 25.54 26.13 27.20
Seg Avg Prior: 75% 27.40 24.24 22.27 21.88 23.33 22.40 21.47 20.96 20.90

Seg Max Prior: 75% 27.40 24.14 21.95 21.39 22.81 21.98 20.94 20.34 20.22
Blind Prior: 62.5% 32.56 29.80 29.22 30.00 32.21 29.34 29.10 29.20 29.67
Seg Avg Prior: 62.5% 32.56 29.18 27.66 27.22 28.08 27.53 26.80 26.35 26.21

Seg Max Prior: 62.5% 32.56 28.87 27.01 26.24 26.80 26.77 25.85 25.20 24.87

Industrial phantom

Blind Prior: 100% 18.43 18.43 16.07 14.17 12.99 15.31 14.17 13.28 12.68

Blind Prior: 75% 18.46 17.91 16.10 14.99 14.80 15.23 14.42 13.93 13.80
Blind Prior: 62.5% 20.72 19.96 18.55 17.90 18.15 18.03 17.49 17.27 17.37
Blind Prior: 50% 22.14 21.24 20.25 20.04 20.70 19.68 19.34 19.31 19.60

effusion in human thoracic imaging, or the formation of a defect in industrial
nondestructive evaluation—emerge with improved spatial resolution in the
resulting reconstructions. This improvement was evident in all cases tested,
even when available boundary data was decreased to 50% in the case of
the industrial phantom. By updating the prior, based on information ob-
tained from the EIT reconstructions, the conductivity reconstructions can
be further improved. We have demonstrated how these updates may be ac-
complished using average regional conductivity values from the EIT recon-
structions resulting in minimal introduced bias. In addition to conductivity
reconstructions, we have provided relative `2 errors to help quantify the
increase in spatial resolution resulting from the application of the method.

The ability to obtain high-quality EIT images in cases where only part of
the boundary is accessible is important in a variety of applications. While
an extensive study of how little partial data can be used to still produce
informative images is outside the scope of this paper, we expect reasonable
results near the area of data acquisition. Further study is also required to
evaluate the method’s clinical efficacy and industrial utility.

A thorough analysis of the computational expense associated with the
method is also beyond the scope of this work, and the computations used
in this paper were not optimized for speed. However, the method is par-
allelizable in either the k or z variable. Furthermore, computation of the
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scattering prior tPR and the asymptotic replacement term µint may be per-
formed in advance offline, and it may be possible to use the same prior (or a
small set of similar priors) for all frames in a sequence of images. Thus, we
expect that real-time imaging (as demonstrated in [13]) will be achievable
with this method if a prior or priors are computed in advance.
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